Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Mol Biol ; 435(5): 167966, 2023 03 01.
Article in English | MEDLINE | ID: covidwho-2180733

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) envelope (E) protein forms a pentameric ion channel in the lipid membrane of the endoplasmic reticulum Golgi intermediate compartment (ERGIC) of the infected cell. The cytoplasmic domain of E interacts with host proteins to cause virus pathogenicity and may also mediate virus assembly and budding. To understand the structural basis of these functions, here we investigate the conformation and dynamics of an E protein construct (residues 8-65) that encompasses the transmembrane domain and the majority of the cytoplasmic domain using solid-state NMR. 13C and 15N chemical shifts indicate that the cytoplasmic domain adopts a ß-sheet-rich conformation that contains three ß-strands separated by turns. The five subunits associate into an umbrella-shaped bundle that is attached to the transmembrane helices by a disordered loop. Water-edited NMR spectra indicate that the third ß-strand at the C terminus of the protein is well hydrated, indicating that it is at the surface of the ß-bundle. The structure of the cytoplasmic domain cannot be uniquely determined from the inter-residue correlations obtained here due to ambiguities in distinguishing intermolecular and intramolecular contacts for a compact pentameric assembly of this small domain. Instead, we present four structural topologies that are consistent with the measured inter-residue contacts. These data indicate that the cytoplasmic domain of the SARS-CoV-2 E protein has a strong propensity to adopt ß-sheet conformations when the protein is present at high concentrations in lipid bilayers. The equilibrium between the ß-strand conformation and the previously reported α-helical conformation may underlie the multiple functions of E in the host cell and in the virion.


Subject(s)
SARS-CoV-2 , Humans , Lipid Bilayers/chemistry , Models, Molecular , Protein Conformation, beta-Strand , SARS-CoV-2/chemistry
2.
Pharmaceutics ; 14(8)2022 Jul 25.
Article in English | MEDLINE | ID: covidwho-2023985

ABSTRACT

The growing need for processing natural lipophilic and often volatile substances such as thymol, a promising candidate for topical treatment of intestinal mucosa, led us to the utilization of solid-state nuclear magnetic resonance (ss-NMR) spectroscopy for the rational design of enteric pellets with a thymol self-emulsifying system (SES). The SES (triacylglycerol, Labrasol®, and propylene glycol) provided a stable o/w emulsion with particle size between 1 and 7 µm. The ex vivo experiment confirmed the SES mucosal permeation and thymol delivery to enterocytes. Pellets W90 (MCC, Neusilin®US2, chitosan) were prepared using distilled water (90 g) by the M1-M3 extrusion/spheronisation methods varying in steps number and/or cumulative time. The pellets (705-740 µm) showed mostly comparable properties-zero friability, low intraparticular porosity (0-0.71%), and relatively high density (1.43-1.45%). They exhibited similar thymol release for 6 h (burst effect in 15th min ca. 60%), but its content increased (30-39.6 mg/g) with a shorter process time. The M3-W90 fluid-bed coated pellets (Eudragit®L) prevented undesirable thymol release in stomach conditions (<10% for 3 h). A detailed, ss-NMR investigation revealed structural differences across samples prepared by M1-M3 methods concerning system stability and internal interactions. The suggested formulation and methodology are promising for other lipophilic volatiles in treating intestinal diseases.

3.
Biochim Biophys Acta Biomembr ; 1862(7): 183274, 2020 07 01.
Article in English | MEDLINE | ID: covidwho-820155

ABSTRACT

The gp41 type I membrane protein is part of the trimeric Env complex forming the spikes at the HIV surface. By interacting with cellular receptors, the Env protein complex initiates the infectious cycle of HIV. After the first contact has been established Env disassembles by shedding gp120 while the remaining gp41 undergoes a number of conformational changes which drive fusion of the cellular and the viral membranes. Here we investigated the membrane interactions and oligomerization of the two gp41 heptad repeat domains NHR and CHR. While these are thought to form a six-helix bundle in the post-fusion state little is known about their structure and role during prior fusion events. When investigated in aqueous buffer by CD and fluorescence quenching techniques the formation of NHR/CHR hetero-oligomers is detected. An equilibrium of monomers and hetero-oligomers is also observed in membrane environments. Furthermore, the partitioning to POPC or POPC/POPG 3/1 vesicles of the two domains alone or in combination has been studied. The membrane interactions were further characterized by 15N solid-state NMR spectroscopy of uniaxially oriented samples which shows that the polypeptide helices are oriented parallel to the bilayer surface. The 31P solid-state NMR spectra of the same samples are indicative of considerable disordering of the membrane packing. The data support models where NHR and CHR insert in the viral and cellular membranes, respectively, where they exhibit an active role in the membrane fusion events.


Subject(s)
HIV Envelope Protein gp41/ultrastructure , HIV Infections/genetics , HIV-1/genetics , Membrane Fusion/genetics , Cell Membrane/genetics , Cell Membrane/virology , HIV Envelope Protein gp41/chemistry , HIV Envelope Protein gp41/genetics , HIV Infections/virology , HIV-1/pathogenicity , Humans , Magnetic Resonance Spectroscopy , Peptide Fragments/chemistry , Peptide Fragments/genetics , Protein Conformation
4.
Int J Mol Sci ; 21(14)2020 Jul 11.
Article in English | MEDLINE | ID: covidwho-646270

ABSTRACT

A dodecadepsipeptide valinomycin (VLM) has been most recently reported to be a potential anti-coronavirus drug that could be efficiently produced on a large scale. It is thus of importance to study solid-phase forms of VLM in order to be able to ensure its polymorphic purity in drug formulations. The previously available solid-state NMR (SSNMR) data are combined with the plane-wave DFT computations in the NMR crystallography framework. Structural/spectroscopical predictions (the PBE functional/GIPAW method) are obtained to characterize four polymorphs of VLM. Interactions which confer a conformational stability to VLM molecules in these crystalline forms are described in detail. The way how various structural factors affect the values of SSNMR parameters is thoroughly analyzed, and several SSNMR markers of the respective VLM polymorphs are identified. The markers are connected to hydrogen bonding effects upon the corresponding (13C/15N/1H) isotropic chemical shifts of (CO, Namid, Hamid, Hα) VLM backbone nuclei. These results are expected to be crucial for polymorph control of VLM and in probing its interactions in dosage forms.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Valinomycin/chemistry , Betacoronavirus/chemistry , Betacoronavirus/isolation & purification , Betacoronavirus/metabolism , COVID-19 , Carbon Isotopes/chemistry , Coronavirus Infections/pathology , Coronavirus Infections/virology , Crystallography , Hydrogen Bonding , Nitrogen Isotopes/chemistry , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , SARS-CoV-2 , Valinomycin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL